Lines Avoiding Unit Balls in Three Dimensions

نویسندگان

  • Pankaj K. Agarwal
  • Boris Aronov
  • Vladlen Koltun
  • Micha Sharir
چکیده

Let B be a set of n unit balls in R3. We show that the combinatorial complexity of the space of lines in R3 that avoid all the balls of B is O(n3+ε), for any ε > 0. This result has connections to problems in visibility, ray shooting, motion planning, and geometric optimization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the complexity of the sets of free lines and free line segments among balls in three dimensions

In this paper, we show that the worst-case combinatorial complexity of the set of maximal non-occluded line segments among n unit balls is Θ(n). This improves on the trivial Ω(n) and O(n) bounds and also on the Ω(n) lower bound for the restricted setting of arbitrary-size balls [Devillers and Ramos, 2001]. We also prove an Ω(n) lower bound on the complexity of the set of non-occluded lines amon...

متن کامل

An extension theorem for finite positive measures on surfaces of finite‎ ‎dimensional unit balls in Hilbert spaces

A consistency criteria is given for a certain class of finite positive measures on the surfaces of the finite dimensional unit balls in a real separable Hilbert space. It is proved, through a Kolmogorov type existence theorem, that the class induces a unique positive measure on the surface of the unit ball in the Hilbert space. As an application, this will naturally accomplish the work of Kante...

متن کامل

Best approximation by closed unit balls

We obtain a sucint and nesessery theoreoms simple for compactness andweakly compactness of the best approximate sets by closed unit balls. Also weconsider relations Kadec-Klee property and shur property with this objects.These theorems are extend of papers mohebi and Narayana.

متن کامل

Global Well-posedness and Scattering for Defocusing Energy-critical Nls in the Exterior of Balls with Radial Data

We consider the defocusing energy-critical NLS in the exterior of the unit ball in three dimensions. For the initial value problem with Dirichlet boundary condition we prove global well-posedness and scattering with large radial initial data in the Sobolev space Ḣ1 0 . We also point out that the same strategy can be used to treat the energy-supercritical NLS in the exterior of balls with Dirich...

متن کامل

The 3-ball Is a Local Pessimum for Packing

It was conjectured by Ulam that the ball has the lowest optimal packing fraction out of all convex, three-dimensional solids. Here we prove that any origin-symmetric convex solid of sufficiently small asphericity can be packed at a higher efficiency than balls. We also show that in dimensions 4, 5, 6, 7, 8, and 24 there are origin-symmetric convex bodies of arbitrarily small asphericity that ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete & Computational Geometry

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2005